Decision making plays an important role in the UPSC examination. You have to make a sound decision while you are choosing an optional subject, you have to take care of the pros and cons while you choose your mentor whether online or offline class. You have to carefully choose your optional subject where you have to make sure that the optional subject that you choose does not create an extra burden on you. If you have chosen Chemistry as your optional subject then checkout the preceding section about UPSC chemistry optional syllabus and UPSC chemistry optional paper.
UPSC Chemistry Optional Syllabus: Paper I
Check out the chemistry syllabus for UPSC below:-
1. Atomic Structure
Heisenberg’s uncertainty principle, Schrodinger wave equation (time-independent); Interpretation of wave function, particle in one-dimensional box, quantum numbers, hydrogen atom wave functions; Shapes of s, p and d orbitals.
Also Read:- 6 Best Optional Subjects in UPSC: Guide to Choose Most Scoring Non-technical Subjects
2. Chemical Bonding
Ionic bond, characteristics of ionic compounds, lattice energy, Born-Haber cycle; covalent bond and its general characteristics, polarities of bonds in molecules and their dipole moments; Valence bond theory, the concept of resonance and resonance energy; Molecular orbital theory (LCAO method); bonding in H2+, H2, He2+ to Ne2, NO, CO, HF, and CN–; Comparison of valence bond and molecular orbital theories, bond order, bond strength and bond length.
3. Solid State
Crystal systems; Designation of crystal faces, lattice structures, and unit cell; Bragg’s law; X-ray diffraction by crystals; Close packing, radius ratio rules, calculation of some limiting radius ratio values; Structures of NaCl, ZnS, CsCl and CaF2; Stoichiometric and nonstoichiometric defects, impurity defects, semiconductors.
4. The Gaseous State and Transport Phenomenon
Equation of state for real gases, inter-molecular interactions and critical phenomena and liquefaction of gases, Maxwell’s distribution of speeds, intermolecular collisions, collisions on the wall and effusion; Thermal conductivity and viscosity of ideal gases.
5. Liquid State
Kelvin equation; Surface tension and surface energy, wetting and contact angle, interfacial tension and capillary action.
6. Thermodynamics
Work, heat and internal energy; first law of thermodynamics.
The second law of thermodynamics; entropy as a state function, entropy changes in various processes, entropy– reversibility and irreversibility, Free energy functions; Thermodynamic equation of state; Maxwell relations; Temperature, volume and pressure dependence of U, H, A, G, Cp and Cvá and â; J-T effect and inversion temperature; criteria for equilibrium, the relation between equilibrium constant and thermodynamic quantities; Nernst heat theorem, the introductory idea of the third law of thermodynamics.
7. Phase Equilibria and Solutions
Clausius-Clapeyron equation; phase diagram for a pure substance; phase equilibria in binary systems, partially miscible liquids–upper and lower critical solution temperatures; partial molar quantities, their significance, and determination; excess thermodynamic functions and their determination.
8. Electrochemistry
Debye-Huckel theory of strong electrolytes and Debye-Huckel limiting Law for various equilibrium and transport properties. Galvanic cells, concentration cells; electrochemical series, measurement of e.m.f. of cells and its applications fuel cells and batteries.
9. Processes at Electrodes
Double layer at the interface; the rate of charge transfer, current density; over-potential; electro-analytical techniques: Polarography, amperometry, ion-selective electrodes, and their uses.
10. Chemical Kinetics
Differential and integral rate equations for zeroth, first, second and fractional order reactions; Rate equations involving reverse, parallel, consecutive and chain reactions; branching chain and explosions; effect of temperature and pressure on rate constant; Study of fast reactions by stop-flow and relaxation methods; Collisions and transition state theories.
11. Photochemistry
Absorption of light; decay of excited state by different routes; photochemical reactions between hydrogen and halogens and their quantum yields.
12. Surface Phenomena and Catalysis
Absorption from gases and solutions on solid adsorbents, Langmuir and B.E.T. adsorption isotherms; determination of surface area, characteristics and mechanism of reaction on heterogeneous catalysts.
13. Bio-inorganic Chemistry
Metal ions in biological systems and their role in ion transport across the membranes (molecular mechanism), oxygen-uptake proteins, cytochromes and ferredoxins.
14. Coordination Compounds
a) Bonding theories of metal complexes; Valence bond theory, crystal field theory and its modifications; applications of theories in the explanation of magnetism and electronic spectra of metal complexes.
b) Isomerism in coordination compounds; IUPAC nomenclature of coordination compounds; stereochemistry of complexes with 4 and 6 coordination numbers; chelate effect and polynuclear complexes; trans effect and its theories; kinetics of substitution reactions in square-planer complexes; thermodynamic and kinetic stability of complexes.
(c) EAN rule, Synthesis structure and reactivity of metal carbonyls; carboxylate anions, carbonyl hydrides, and metal nitrosyl compounds.
(d) Complexes with aromatic systems, synthesis, structure, and bonding in metal olefin complexes, alkyne complexes and cyclopentadienyl complexes; coordinative unsaturation, oxidative addition reactions, insertion reactions, fluxional molecules and their characterization; Compounds with metal-metal bonds and metal atom clusters.
15. Main Group Chemistry
Boranes, borazines, phosphazenes and cyclic phosphazene, silicates and silicones, Interhalogen compounds; Sulphur – nitrogen compounds, noble gas compounds.
16. General Chemistry of ‘f’ Block Elements
Lanthanides and actinides; separation, oxidation states, magnetic and spectral properties; lanthanide contraction.
Also Read:- A Detailed Guide to Choosing the Best Optional Subject for UPSC Exam
UPSC Chemistry Optional Syllabus for Paper-II
Check out the UPSC chemistry optional syllabus for paper II
1. Delocalised Covalent Bonding
Aromaticity, anti-aromaticity; annulenes, azulenes, tropolones, fulvenes, sydnones.
#a Reaction Mechanisms: General methods (both kinetic and non-kinetic) of study of the mechanism of organic reactions: isotopic method, cross-over experiment, intermediate trapping, stereochemistry; the energy of activation; thermodynamic control and kinetic control of reactions.
#b Reactive Intermediates: Generation, geometry, stability, and reactions of carbonium ions and carbanions, free radicals, carbenes, benzynes, and nitrenes.
#c Substitution Reactions: SN1, SN2, and SNi mechanisms; neighbouring group participation; electrophilic and nucleophilic reactions of aromatic compounds including heterocyclic compounds–pyrrole, furan, thiophene, and indole.
#d Elimination Reactions: E1, E2, and E1cb mechanisms; orientation in E2 reactions–Saytzeff and Hoffmann; pyrolytic syn elimination – Chugaev and Cope eliminations.
#e Addition Reactions: Electrophilic addition to C=C and C=C; nucleophilic addition to C=0, C=N,conjugated olefins and carbonyls.
#f Reactions and Rearrangements: (a) Pinacol-pinacolone, Hoffmann, Beckmann, Baeyer–Villiger, Favorskii, Fries, Claisen, Cope, Stevens, and Wagner-Meerwein rearrangements.
2. Aldol Condensation
Claisen condensation, Dieckmann, Perkin, Knoevenagel, Witting, Clemmensen, Wolff-Kishner, Cannizzaro, and von Richter reactions; Stobbe, benzoin and acyloin condensations; Fischer indole synthesis, Skraup synthesis, Bischler-Napieralski, Sandmeyer, Reimer-Tiemann and Reformatsky reactions.
3. Pericyclic Reactions
Classification and examples; Woodward-Hoffmann rules – electrocyclic reactions, cycloaddition reactions [2+2 and 4+2] and sigmatropic shifts [1, 3; 3, 3 and 1, 5] FMO approach.
4. Preparation and Properties of Polymers
Organic polymers–polyethene, polystyrene, polyvinyl chloride, Teflon, nylon, terylene, synthetic and natural rubber.
Biopolymers: Structure of proteins, DNA and RNA.
5. Synthetic Uses of Reagents
OsO4, HIO4, CrO3, Pb(OAc)4, SeO2, NBS, B2H6, Na-Liquid NH3, LiAlH4, NaBH4, n-BuLi and MCPBA.
6. Photochemistry
Photochemical reactions of simple organic compounds, excited and ground states, singlet and triplet states, Norrish-Type I and Type II reactions.
7. Spectroscopy
Principle and applications in structure elucidation:
(i) Rotational: Diatomic molecules; isotopic substitution and rotational constants.
(ii) Vibrational: Diatomic molecules, linear triatomic molecules, specific frequencies of functional groups in polyatomic molecules.
(iii) Electronic: Singlet and triplet states; nπ* and π π* transitions; application to conjugated double bonds and conjugated carbonyls–Woodward-Fieser rules; Charge transfer spectra.
(iv) Nuclear Magnetic Resonance (1H NMR): Basic principle; chemical shift and spin-spin interaction and coupling constants.
(v) Mass Spectrometry: Parent peak, base peak, metastable peak, McLafferty rearrangement.
Also Read:- Check-out the Best Timetable to Ace the Upcoming UPSC IAS Exam
Conclusion
To score good marks in the optional subject you have to make sure that you know its syllabus completely. Along with the syllabus, you should be aware of what topic should be given priority and what topic should be given less time. With such important knowledge, any candidate can score good marks in optional.
This was very useful…please provide more subject-specific articles of this kind.
Thank you for clearing the doubts of the syllabus and pattern of chemistry in UPSC, but should we actually choose chemistry as our optional subject?
Is this subject an advantage for intermediate students for opt for chemistry ?
I am confused between what optional to choose. What should I do?